
How SAH eats 2 billion rows for lunch

Vince Kellen, PhD, Judy White, Kenny Valdivia, Mohamed Al-Omar, Brett Pollak, Kevin Chou JD, Dan Suchy

September 20, 2023



2

Agenda

1. Intro – What is the Student Activity Hub

2. SAP HANA basics – in-memory, columnar store, parallel architecture, heavy 
compression

3. SAP HANA optimizations

4. SAH architecture basics –activity tables, 4 view levels, ETL vs EL

5. SAH architecture performance optimizations – view materializations, table 
partitioning

6. Questions



SAH: A mission-driven, multi-institution collaboration

MISSION

Advance the state of 
student data 
management and 
student analytics in 
order to achieve our 
institutional goals, as 
diverse as they may be, 
while protecting 
institutional autonomy 
and control over all 
data.

PROBLEM

The SAH tackles the 
student data 
management data and 
analysis problems 
directly, giving control 
back to the institution. 
Think of SAH as a rich 
and high performance 
‘transmission.’ You can 
drive it anywhere you 
like.

SOLUTION

SAH allows for the 

merging of all kinds of 

data in one solution. 

Each institution has its 

own high-speed, in-

memory server 

environment. With its 

security, scalability and 

sophistication, we can 

integrate any and all 

student data.

OUTCOME

The goal is modest. We 
want help institutions 
who might to leverage a 
common, but easily 
tailored or customized 
solution. Our goal is not 
to “sell” large numbers 
of SAH. We just want to 
make a difference 
where we can and 
collaborate with peers.

3



The Student Activity Hub (SAH) can support various needs

Institutional analytics: 
Graduation rates, retention rates, enrollments, 
demographic, lists of majors/minors, socio-
economic analysis, IPEDS reporting, census date 
frozen reporting etc.

Learning analytics: 
Course engagement, engagement by 
hour/day/week of term, submissions, within-
course or between-course assignment grades, 
assignments overdue, discussion participation, 
clickstream, page views, video views, etc.

Operational analytics: 
Entrance test scores, satisfactory progress, 
term and course grades, commencement of 
academic activity, financial aid, bottleneck 
course, major/minor switching etc.

Engagement analytics: 
Advising interactions, co-curricular activities, degree 
progress tool use, mobile app interactions, student 
engagement impact on progression or retention, etc.

SAH

4



SAH collaboration values

• Service to the community. Help improve student data management in higher 

education

• Be transparent with everything, including pricing

• Be frugal and affordable. SAP HANA and SAH are extremely affordable for everyone!

• Use partners! We know we can’t do it alone so we are partner-friendly

• Use leading edge and wickedly fast technology (SAP HANA)

• Embrace data standards (e.g., 1EdTech standards)

• Use a very rigorous, disciplined, and clever software engineering approach

5



SAH was designed to give institutions full control

SaaS or IaaS: You can establish the level of control you need. We can operate in a full SaaS  or in a full 
IaaS mode and adjust fees as needed. Items of control include:

• Each institution gets its own environment: This enables full institutional control, easy tailoring, new data integrations. Each 
institution can control its own change management process, adding new views, new data

• Data integration platform: We use Apache Kafka, Apache NiFi, Go Anywhere and WSO2 API manager. Institutions are free to 
choose their own integration tools and operate them or let us do it for them

• Custom view construction: The core SAH views are easily ‘forkable’ enabling institutions to develop their own solutions. We 
can perform the customization work or the institution can. Either way! All views are 100% ANSI SQL (2016)

• New activity tables: Institutions are free to add their own activity tables (a type of data lake), provided they do not alter the 
delivered activity tables. Views can freely access data from delivered activity tables or institution customized activity tab les

• Metadata management and daily operations: As views get created and modified, we have a metadata administrative 
console (AH-MAC) tool that enables ‘materializations’, controls API access for downstream applications, and creation of 
data groups (Group Builder). These two tools are available to institutions that want full control over their environment. 
These two tools are written in Python. Institutions can ‘fork’ their own tools, but will need to manage the change process for 
new server console tools themselves. Institutions can administer their environment or let us do it for them

• Report building: At the moment, SAH does require each institution to have a reporting strategy. We have a large collection 
of workbooks in Tableau and Cognos we make available

6



Student Activity Hub Partners

Moran Technology Consulting

Slower, Inc. 

ERP Associates 

 

InvenioLSI 

7

NTT DATA

SAP

 

Instructure

Our partners are an integral part of Student Activity Hub development and adoption

https://www.morantechnology.com/
https://www.erpa.com/
https://www.inveniolsi.com/
https://slower.ai/
https://www.nttdata.com/global/en/
https://www.sap.com/index.html


8

SAP HANA BASICS: Key Differentiators

• In-memory compute engine – tunable, lower latency for instant access to huge data pools  e.g.;  

memory data in 5 nanoseconds as compared to conventional databases that take 5 milliseconds.

• Massively Parallel Processing - designed to perform its basic calculations, such as analytic joins, 

scans and aggregations in parallel. Often it uses hundreds of cores at the same time, fully utilizing the 
available computing resources of distributed systems.

• Column store - column storage uses contiguous memory locations which eliminates the need for 

additional index structures. Storing data in columns is functionally similar to having a built-in index for each 
column. Column scanning speed of the in-memory column store and the compression mechanisms – 
especially dictionary compression – allow read operations with very high performance.

• Compression – efficient compression of data makes it less costly to keep data in main memory while 

speeds up searches and calculations.  SAP HANA can deliver 4:1 compression ratios or higher.

See backup slides for details



9

Optimizations – How we bend the OPEX curve

• Benchmarking – total cost of ownership target versus comparable technologies for TCO targets to bend 

the cloud 1 to 4 cloud Capex/Opex ratio.

• Workload Profiling – profile system under load for query performance and operational duty cycle to 

establish baseline targets and tuning techniques for optimization e.g.;  partitioning, data slicing, data 
overhead and “budgetdust”.

• Performance Profiling – determining the right mix of memory, cache, disk and instance sizing to 

deliver optimal performance at affordable price with no disruption to user experience or refactoring the AH 
code base.

• Data Tiering – profiling the age of the business data to determine proper placement between hot (in-

memory),  warm (cache/SSD) and cold (disk) to match performance based on the “user defined” value of 
the data.

See backup slides for details



SAH view architecture

All data streamed in via 
Apache NiFi / Kafka 

Data replication services via 
SAP SDI

Activity hubs can have many 
activity tables

Activity table match common 
ingestion patterns

Three types of activity tables:
1. IoT style (e.g., Caliper event 

steams)
2. Table replication (e.g., 

Canvas Batch)
3. Table incremental 

replication (e.g., ERP 
transactional systems)

Activity
Table

Base
Views (BVs)

Intermediate
Views (IVs)

Curated
Views (CVs)

Final Curated 
Views (FCVs)

Marks and/or remove 
duplicates

If the activity table is 
incremental replication, 
removes deletes

Manages type conversions as 
needed

If needed, renames columns 
that reflect source system

Creates reusable column 
segments used more widely 
within IVs or CVs

Contains view-localized 
column segments that are 
not shared 

Can reference other BVs

Combines data from other 
BVs or IVs

Are typically either wide 
(repeated columns) or  
narrow (repeated rows 
instead of repeated columns)

Adds in more extended 
calculations, aggregations, 
complex where clauses, 
complex joins (e.g., business 
logic, or logic to enhance 
materialization, snapshot 
performance)

Can perform type 
conversions as needed

Can rename columns to user-
friendly and highly 
conformed names

Combines data from other 
BVs and IVs

Normally do not reference 
each other, but can if needed

Transforms column names 
into user-friendly names, 
replaces underscores in 
column names with spaces

Can filter data through 
WHERE or JOIN clauses

Can integrate Group Builder 
groups

Combines data from CVs, IVs 
or BVs as needed, fulfilling on 
an analysis ‘vignette’ or 
common need

Serve as Tableau and Cognos 
data sources

Normally used to service API 
requests via SAH API 
architecture

10



Types of “Curated views” of the data

Class and Section Stats Per Term
Dozens of class and section statistics, term by term for course and 
section planning, instructor load, etc. Census and operational 
metrics

Admissions and financial aid
Applicants, applications, test scores, scholarships, financial aid 
forms and awards

Continuing education students (Extension, other)
Demographics, enrollment, credentials

LMS and other learning analytics
Canvas, OpenEdX, Kaltura. Canvas specific views and general 
learning event views

Institution extensions
Any source system data can be added and additional views created 
by the institution or partners for customized analytics

Demographics
Residency, SAT/ACT and other entrance test scores, academic 
status, etc.

Enrollment
Enrollment counts by class, departments, schools, colleges, 
including course grades. Census and operational metrics

Major/Minors (wide and narrow)
Degrees, Programs, switching of majors, etc. Census and 
operational metrics

Student Statistics Per Term
Dozens of common student statistics, term-by-term for 
examining progression. Census and operational versions

Retention 
Cohort, retention and graduation rates, etc. Census and 
operational metrics

11



Data integration – typical approach

Schema 
Structure

Transformation
BI Layer 

Cognos - Tableau

Source Systems

Database / Data Warehouse 
Platform

Extract, Transform, & Load (ETL) Reports, Visuals, Alerts

Analysts

12



SAH simplifies data integration
Data integration is decoupled from view design and can be implemented ahead of actual view design and use. Activity tables 
serve as a data lake and can hold billions of rows of data

Modular, 
Reusable 

Views

Transformation

BI Layer 
Cognos - Tableau

Analysts

Database / Data Warehouse 
Platform

Extract & Load
Streaming

Reports, Visuals, Alerts

Activity 
Tables

Source Systems

13



H2H1

FCV

IV IV

CV CV

BV BV BV BV BV BV

CV

Activity Table

SAH Reference 
Architecture

End user

MT

MT MT

MT

L

MT

L

SNAP

SNAP

FCV

SNAP

IV

BV

DELTA

Derived Activity Table iPaaSH3

G
ET_A

H
_D

A
TA

 A
P

I A
cce

ss

Downstream
systems

G roup 

Bui lder

G r oup
Contents

G r oup
Contents

14

Upstream
systems



View materialization
• Why?

• To stabilize data for a period of time (e.g., for 1 minute, 3 hours, daily, or any unit of time). 

• To enhance view retrieval performance by ‘memorializing’ joins and calculations

• Materialization methods
• Full, Full in slices, Full in half slices

• Delta, Delta in slices, Delta with logs, Delta in slices with logs

• Snapshots

• Materialization partitioning

• We can add SQL optimization hints in any part of the materialization process, which can dramatically speed up some unique cas es

• Any materialization with slices can create slice partitions using any valid SQL where clause 

• Partitions can be established before hand from fixed table entries, useful for the largest of tables

• A subset of partitions can be made active for ‘top slice’ materialization. Useful for old data that can never be updated. Active slices can be one 
(slightly faster) or can be any number of slices that meet a criteria (any valid SQL where clause)

• Delta Views (coming Q1 2024)
• These are not the same as delta materializations. These are views that have, in each row, a column that indicates all the columns that have been 

changed since the prior row. These views are automatically created based on configuration items. Delta views can be materialized

• These are useful for downstream application integration or BI visualization purposes to identify rows that have a change in a  one columns (e.g., 
Last Name) or any combination of columns

15



Table hardening

• Why?
• When the SAH receives rows from source systems, some calculations or joins operations done once 

and never again. Caliper event data and other logging, CDC or IOT style data often meet this criteria

• Some examples include: 

• Light transformations (splitting JSON, trimming columns)

• Bringing additional values to the activity row via joins with other data

• The hardening routines can be run at any schedule: seconds or minutes after row is received or hours

• Derived activity tables

• These are tables designed to hold rows that have a perfect 1:1 match with the activity table, but can 
contain columns that have more computationally expensive calculations such as lag() or lead() 
functions

• The same concept of write once and never again applies

16



Table partitioning
• Table partitioning has many performance benefits. Under the hood and hidden from the developer, HANA treats one 

table that is partitioned into 30 partitions as 30 separate tables

• This enables much more parallelism to queries that process it, providing significant speedups and load balancing, 
distributing tables over multiple hosts

• Each partition can contain 2 billion rows, each table can have 16,000 partitions, which means tables can have 32,000 
billion rows! Upon startup, HANA only loads into memory partitions that are accessed. This typically allows is to keep 
only 50% of the data in memory. 

• Many types of table partitioning

• Round robin – rows are assigned automatically to different partitions 

• Range – rows are assigned to different partitions based on a range of values in a table, e.g., a partition for each year/month 

• Hash – rows are assigned different partitions based on a hash of one or more columns, typically for primary key distribution

• Multi-level – 2 combinations of the three options above (hash-range, round robin-range, hash-hash, range-range)

• Heterogeneous – more options for range-range and range-hash 2-level partitions

• And more options!

• We typically use round-robin and range partitioning on SAH tables. We partition activity tables and larger MTs

17



Table tiering
• We can automatically or manually place data into a less expensive tier 

• For the SAH, the Caliper activity table is a candidate. We maintain a copy of the original 
JSON received in a cold tier (Google Big Query) via our integration platform and remove 
it from HANA as it is redundant

• Older Caliper data (events 2 years or older) can be placed into a warm or cold tier. Our 
analysis shows that an SSD (warm) tier is the right blend of cost control and performance 
(although disk is 6-10x slower generally than in-memory)

• This tiering is transparent to the SAH developer and the end-user

• Table tiering can be applied to other activity tables that grow large and have rows that 
are infrequently accessed

18



Caliper Events

Renames fields, establishes 
‘Flag’ and ‘Count’ fields. 
Designed to run ‘live’ and 
never be materialized. 
Includes only event rows 
where IS_ACTIVE=‘Y’

SAH_FCV_
LMS_STUDENT

Designed to analyze all records live and 
at the lowest level of granularity. No 
filters. All left joins.

SAH_IV_LMS_DETAIL

SAH_BV_LMS

SAH_BV_LMS_CB_
COURSE_DIM

_MT

SAH_BV_LMS_CB_
USER_DIM

_MT

SAH_CV_
LMS_GRADING_EVEN TS

AH_CV_
DATE_D_CALENDAR

_MT

Brings together 
Canvas user data 
for the actor and 
the user (the 
student), as well as 
Canvas course 
information for all 
grading events. 
Canvas events with 
Event_Type=‘Grade
Event’ do not 
include a student 
SIS id Like other 
events, the the 
actor_id and the 
membership_user_i
d (the person who 
is a member of the 
course) can be 
different (grader, 
student for 
example) 

SAH_BV_LMS_
GRADING_EVENTS

Selects all grade events

SAH_FCV_LMS_
GRADING_EVENTS

SAH_CV_
LMS_SUBMISSION_EVEN TS

SAH_FCV_LMS_
SUBMISSION_EVEN TS

SAH_BV_LMS_
SUBMISSION_EVEN TS

The submission events CV above brings 
together Canvas user data for the actor 
and the user (the student), as well as 
Canvas course information for all grading 
events. Canvas events with. Also the 
actor_id and the membership_user_id (the 
member of the course) can be different 
(grader, student for example) for these 
events. This view does  not link in 
bv_lms_cb_course_dim. Rather it inherits 
the from the iv_lms_cb_submission view

SAH_IV_LMS_
CB_SUBMISSION

_MT

Canvas Caliper  / Batch
Combo FCVs (Group 1, 7 FCVs)

SAH_FCV_LMS_
COURSE_EVENTS

SAH_CV_
LMS_COURSE_EVEN TS

SAH_BV_LMS_
COURSE_EVENTS

SAH_CV_
STUDENT_STATS_PER_TERM

_MT

SAH_CV_
DEMOGRAPHICS

_MT

Selects Canvas events with 
object_type_t='course’

Selects Canvas events with 
object_type_t='submission’
and object_canvas_id_t is 
not null. The object_id_t 
field contains ids for ONLY 
events that have a 
submission row in 
submission_dim. 

The course events CV above brings 
together Canvas user data for the actor 
and the user (the student), as well as 
Canvas course information for all events 
related to a course events. The actor_id 
and the membership_user_id (the member 
of the course) can be different (grader, 
student for example) for these events. This 
view joins with supporting BVs identical to 
the grading events CV.

SAH_IV_LMS_CB_
DISCUSSION_TOPIC_EN TRY

_MT

SAH_CV_LMS_
DISCUSSION_ENTRY_EVEN TS

SAH_BV_LMS__
DISCUSSION_ENTRY_EVENTS

SAH_FCV_LMS_
DISCUSSION_ENTRY_EVEN TS

SAH_BV_LMS_CB_

DISCUSSION_TOPIC_DIM

SAH_BV_LMS_CB_
DISCUSSION_ENTRY_DIM

SAH_BV_LMS_CB_
DISCUSSION_ENTRY_FACT

SAH_FCV_LMS_
FILE_EVENTS

SAH_BV_LMS_
FILE_EVENTS

SAH_CV_
LMS_FILE_EVENTS

SAH_BV_LMS_CB_
FILE_DIM

_MT

SAH_FCV_LMS_
DISCUSSION_TOPIC_EVEN TS

SAH_CV_LMS_
DISCUSSION_TOPIC_EVEN TS

SAH_BV_LMS_
DISCUSSION_TOPIC_EVEN TS

SAH_BV_LMS_CB_
DISCUSSION_TOPIC_DIM

Caliper Event Time Stats

Contains statistics related to time between events (prior, after) that are created 
24 hours in arrears. This event table has a 1:1 relationship with the 
EVENT_LMS_CALIPER table with a primary of ID, per the caliper standard. The 
ID must be unique across all source systems.



Summary
• Real-time and non-real-time use case support. We can mix and max columns that real-time or stabilized 

(materialized) in a view. For example, we do this liberally in the Instructure Canvas LMS views with the 
Caliper Live Event data

• We have tremendous flexibility to configure both SAP HANA and the Student Activity Hub to handle the 
largest of data needs

• Query response time for very large tables is frequently in the 30-150 ms range. Real-time columns from our 
Caliper table (~2 billion rows) can be as fast for simpler queries of 150-1000 ms range for more complicated 
queries 

• While end-users appreciate the speed, development time is greatly sped up as development can work on 
production-sized data environments

• Oh, BTW, HANA is a fantastic transaction environment as well that is used by the largest corporations in 
the world. We have some applications that write directly to HANA for both transaction management and 
analysis in the same platform

20



Q&A
What’s on your 
mind?

21



Thank you!
Website: studentactivityhub.com

22



23

Backup Slides



24

SAP HANA IN-MEMORY COMPUTE ENGINE OVERVIEW

• Connection and Session Management: Creates and manages the 
connection session between clients and SAP HANA database. These sessions 
establish for the user to communicate with the database using different 
query languages.

• Authorization Manager: This component allows only authorized users with 
a legible user ID. It makes sure that the users access, manipulate and share 
only that data which they are allowed to access.

• Replication Server: This is responsible for managing the replication of table 
data as well as metadata from the data source.

• Planning Engine: This creates an execution plan to apply on the database 
depending on the query sent to the computing engine.

• Metadata Manager: It stores all the information, i.e., metadata about the 
data table structures, views, data types, field descriptions, etc.

• Transaction Manager: It manages data transactions and keeps track of 
Commits and Rollbacks.

• Request Processing and Execution Control: This component receives 
queries or requests from client applications and directs it towards the 
respective component in the SAP HANA environment. It consists of an SQL 
Parser, SQL Script, MDX and Calculation Engine.

• SQL Processor: It processes the incoming queries or SQL statements and 
manipulates (insert, delete, update) data accordingly.

• Persistence Layer and Disk Logger: In in-memory computing, RAM stores 
data which makes it volatile (can erase due to system malfunctioning). Thus, 
the persistence layer is responsible for taking data backups periodically and 
store it permanently. It is known as Savepoints and by default, the savepoint 
frequency is in every 5 minutes. The data stores as log volumes and data 
volumes.

Source: https://data-flair.training/blogs/sap-hana-in-memory-computing/



25

SAP HANA MASSIVELY PARALLEL PROCESSING (MPP)

Source: https://help.sap.com/docs/SAP_HANA_PLATFORM/fc5ace7a367c434190a8047881f92ed8/e468034561fe4ee6bb85b00b38e14712.html

• SAP HANA was designed to perform its basic calculations, such as 
analytic joins, scans and aggregations in parallel. Often it uses 
hundreds of cores at the same time, fully utilizing the available 
computing resources of distributed systems.

• With columnar data, operations on single columns, such as searching 
or aggregations, can be implemented as loops over an array stored in 
contiguous memory locations. Such an operation has high spatial 
locality and can efficiently be executed in the CPU cache. With row-
oriented storage, the same operation would be much slower because 
data of the same column is distributed across memory and the CPU is 
slowed down by cache misses.

• Compressed data can be loaded into the CPU cache faster. This is 
because the limiting factor is the data transport between memory and 
CPU cache, and so the performance gain exceeds the additional 
computing time needed for decompression.

• Column-based storage also allows execution of operations in parallel 
using multiple processor cores. In a column store, data is already 
vertically partitioned. This means that operations on different columns 
can easily be processed in parallel. If multiple columns need to be 
searched or aggregated, each of these operations can be assigned to a 
different processor core. In addition, operations on one column can be 
parallelized by partitioning the column into multiple sections that can 
be processed by different processor cores.



26

SAP COLUMN STORE 

Source: https://help.sap.com/docs/SAP_HANA_PLATFORM/fc5ace7a367c434190a8047881f92ed8/8c1fb4ff2f9640ee90e2dccea49c1739.html

A database table is conceptually a two-dimensional data structure organized in 
rows and columns. Computer memory, in contrast, is organized as a linear 
structure. A table can be represented in row-order or column-order. A row-oriented 
organization stores a table as a sequence of records. Conversely, in column storage 
the entries of a column are stored in contiguous memory locations. SAP HANA 
supports both, but is particularly optimized for column-order storage.

Columnar data storage allows highly efficient compression. If a column is sorted, 
often there are repeated adjacent values. SAP HANA employs highly efficient 
compression methods, such as run-length encoding, cluster coding and dictionary 
coding. With dictionary encoding, columns are stored as sequences of bit-coded 
integers. That means that a check for equality can be executed on the integers; for 
example, during scans or join operations. This is much faster than comparing, for 
example, string values.

Columnar storage, in many cases, eliminates the need for additional index 
structures. Storing data in columns is functionally similar to having a built-in index 
for each column. The column scanning speed of the in-memory column store and 
the compression mechanisms – especially dictionary compression – allow read 
operations with very high performance. In many cases, it is not required to have 
additional indexes. Eliminating additional indexes reduces complexity and 
eliminates the effort of defining and maintaining metadata.



27

SAP HANA COMPRESSION OPTIONS

Source: https://www.stechies.com/which-compression-types-exist/ 

Compression type Valid for Details Typical Scenario

Dictionary main delta The standard column store dictionary approach already 
provides a significant space reduction, because the distinct 
column values are mapped to value ID numbers which 
typically require much less space in memory.  Dictionary 
compression is always used. Additionally any one of the 
other compression techniques mentioned below can be in 
place.

generally

Prefix encoding main Identical values at the beginning of the value ID array are 
stored only once, together with the number of 
occurrences.

single predominant 
column value

Run-length encoding main Consecutive identical value IDs are replaced with a single 
instance of this value ID and its start position.

several frequent 
column values

Cluster encoding main The value ID array is cut into clusters of 1024 elements. If 
a cluster contains only occurrences of a single value, the 
cluster is replaced by a single occurrence of that value.

several frequent 
column values

Sparse encoding main The most popular value is removed from the value ID 
array. A bit vector indicates at which positions the value 
was removed.

single predominant 
column value, value ID 
array not well clustered

Indirect encoding main The value ID array is cut into clusters of 1024 elements. If 
a cluster contains only a few distinct value IDs, a cluster 
specific dictionary is created, so that each value ID is 
represented with even fewer bits.

several frequent 
column values



28

BENCHMARKING:  SAP HANA TCO COMPARATIVE ANALYSIS
C

o
st

 p
er

 G
B

BV Query Performance (ms)

10 50 100 500 1000 5000

10
15

20
2

5
30

As-IS

NSE 
20/80

Data 
Tiering

SAP IQ

Lake 
House

CXL
On-

Premise

~$22/GB

Lake House
~$14/GB

CXL Not an 
Option

~$12/GB

HANA COTS
~$27/GB

~$18 - $23 
/GB 

Option 3A/B/C
~$16 - $25/GB

Sn
ow

fl
ak

e

R
ed

sh
if

t,
  B

ig
Q

ue
ry

Code 
Refactoring 
Needed



29

WORLKOAD PROFILING for ACTIVITY HUBS on SAP HANA

Prior State Revised State

1. Partition new activity tables based on logical analysis of the data (date, subregion based partitions) for hot/warm/cold (HWC)

2. Partition large always hot MTs round robin 4-6 partitions to improve within-node parallelization, unless HWC is warranted

3. Change materialization of large or slow processing MTs to use full in half slices, with a date or modulo partition 

4. Use ‘top slice’ partitioning in MTs that have stale data

5. Remove event bag from LMS Caliper activi ty table to a cold tier (1.4 TB, 200 GB Memory footprint)

6. Test out a hardened column hash within NiFi or AH hardening for improved delta materializations

7. Apply the hash method for delta materialization for MTs  that have fewer changes to rows, reducing rows involved in DM

8. Add warm and/or cold tiers to the API log table and the LMS ca liper activi ty table (500 GB data, memory?)

9. Adjust the AH materialization procs to include partitioning clause s tatements to MT table creation, and snag peak mem

10. Test out the application of workload classes to materialization runs, perhaps in conjunction with smart Delta Merge

Continuous Action Plan



30

PERFORMANCE PROFILING:  BALANCING SAP HANA MEMORY, CACHE & DISK

iPaaS

Load accretive data 
into hot storage

HANA 
SLT

Partition & write it 
to warm storage as it 

ages.

Buffer cache must 
grow as warm 

storage gets larger

Cost = ~5.25% 
performance 

reduction

Benefit  = ~55% 
memory 

reduction ($)

Source:  Sherkat et al. 2019. Native store extension for SAP HANA. Proc. VLDB Endow. 12, 12 (August 2019), 2047 –2058. https://doi.org/10.14778/3352063.3352123

https://doi.org/10.14778/3352063.3352123


31

DATA TIERING: INTELLIGENT PLACEMENT OF ACTIVITY DATA

Source:  SAP


	Slide 1
	Slide 2
	Slide 3: SAH: A mission-driven, multi-institution collaboration
	Slide 4: The Student Activity Hub (SAH) can support various needs
	Slide 5: SAH collaboration values
	Slide 6: SAH was designed to give institutions full control
	Slide 7: Student Activity Hub Partners
	Slide 8
	Slide 9
	Slide 10: SAH view architecture
	Slide 11: Types of “Curated views” of the data
	Slide 12: Data integration – typical approach
	Slide 13: SAH simplifies data integration Data integration is decoupled from view design and can be implemented ahead of actual view design and use. Activity tables serve as a data lake and can hold billions of rows of data
	Slide 14
	Slide 15: View materialization
	Slide 16: Table hardening
	Slide 17: Table partitioning
	Slide 18: Table tiering
	Slide 19
	Slide 20: Summary
	Slide 21: Q&A What’s on your mind?
	Slide 22: Thank you! Website: studentactivityhub.com
	Slide 23
	Slide 24: SAP HANA IN-MEMORY COMPUTE ENGINE OVERVIEW
	Slide 25: SAP HANA MASSIVELY PARALLEL PROCESSING (MPP)
	Slide 26: SAP COLUMN STORE 
	Slide 27: SAP HANA COMPRESSION OPTIONS
	Slide 28: BENCHMARKING:  SAP HANA TCO COMPARATIVE ANALYSIS
	Slide 29: WORLKOAD PROFILING for ACTIVITY HUBS on SAP HANA
	Slide 30: PERFORMANCE PROFILING:  BALANCING SAP HANA MEMORY, CACHE & DISK
	Slide 31: DATA TIERING: INTELLIGENT PLACEMENT OF ACTIVITY DATA

